OpenAI APIs - Vision#
RTP-LLM provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models. A complete reference for the API is available in the OpenAI API Reference.
Launch A Server#
Launch the server in your terminal and wait for it to initialize.
[ ]:
import subprocess
from rtp_llm.utils.util import wait_sever_done, stop_server
port=8090
server_process = subprocess.Popen(
["/opt/conda310/bin/python", "-m", "rtp_llm.start_server",
"--checkpoint_path=/mnt/nas1/hf/models--Qwen--Qwen1.5-0.5B-Chat/snapshots/6114e9c18dac0042fa90925f03b046734369472f/",
"--model_type=qwen_2",
f"--start_port={port}"
]
)
wait_sever_done(server_process, port)
Using Python Requests#
[ ]:
import requests
url = f"http://localhost:{port}/v1/chat/completions"
data = {
"model": "Qwen/Qwen2.5-VL-7B-Instruct",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "describe photo"
},
{
"type": "image_url",
"image_url": {
"url": "/mnt/nas1/hf/llava-v1.5-7b/1.jpg"
}
}
]
}
],
"max_tokens": 300,
}
response = requests.post(url, json=data)
print(response.text)
Using OpenAI Python Client#
[ ]:
from openai import OpenAI
client = OpenAI(base_url=f"http://localhost:{port}/v1", api_key="None")
response = client.chat.completions.create(
model="Qwen/Qwen2.5-VL-7B-Instruct",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "describe photo"
},
{
"type": "image_url",
"image_url": {
"url": "/mnt/nas1/hf/llava-v1.5-7b/1.jpg"
}
}
]
}
],
max_tokens=300,
)
print(response.choices[0].message.content)