OpenAI APIs - Embedding#
RTP-LLM provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models. A complete reference for the API is available in the OpenAI API Reference.
Launch A Server#
[ ]:
import subprocess
from rtp_llm.utils.util import wait_sever_done, stop_server
port=8090
server_process = subprocess.Popen(
["/opt/conda310/bin/python", "-m", "rtp_llm.start_server",
"--checkpoint_path=/mnt/nas1/hf/models--Qwen--Qwen1.5-0.5B-Chat/snapshots/6114e9c18dac0042fa90925f03b046734369472f/",
"--model_type=qwen_2",
f"--start_port={port}"
]
)
wait_sever_done(server_process, port)
Using Python Requests#
[ ]:
import requests
text = "Once upon a time"
response = requests.post(
f"http://localhost:{port}/v1/embeddings",
json={"model": "Alibaba-NLP/gte-Qwen2-1.5B-instruct", "input": text},
)
text_embedding = response.json()["data"][0]["embedding"]
print(f"Text embedding (first 10): {text_embedding[:10]}")
Using OpenAI Python Client#
[ ]:
import openai
client = openai.Client(base_url=f"http://localhost:{port}/v1", api_key="None")
# Text embedding example
response = client.embeddings.create(
model="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
input=text,
)
embedding = response.data[0].embedding[:10]
print(f"Text embedding (first 10): {embedding}")